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Let X be a real Banach space and let (f(n)) be a positive nondecreasing
sequence. We consider systems of unit vectors (xi)

.

i=1 in X which satisfy
||; i ¥ A±xi || \ |A|−f(|A|), for all finite A …N and for all choices of signs. We iden-
tify the spaces which contain such systems for bounded (f(n)) and for all
unbounded (f(n)). For arbitrary unbounded (f(n)), we give examples of systems
for which [xi] is H.I., and we exhibit systems in all isomorphs of a1 which are not
equivalent to the unit vector basis of a1. We also prove that certain lacunary Haar
systems in L1 are quasi-greedy basic sequences. © 2001 Elsevier Science (USA)
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1. INTRODUCTION

The following elementary isometric characterization of the unit vector
basis of an1 provides the motivation for this paper.

Theorem 0. Let (xi)
n
i=1 be unit vectors in a real Banach space X such

that ||;n
i=1 ±xi ||=n for all choices of signs. Then ||;n

i=1 aixi ||=;n
i=1 |ai |

for all scalars a1, ..., an.

We examine the ‘‘stability’’ of the above result with respect to small
changes in the hypothesis. Accordingly, we study two classes of ‘‘approxi-
mate a1 systems.’’ The following definition corresponds to the mildest
possible weakening of the hypothesis.

Definition 1.1. Let (xi)i ¥ I be a sequence of unit vectors in a Banach
space X (where I={1, 2, ..., n} or I=N), and let m \ 0. We say that (xi) is
a m-approximate a1 system if

> C
i ¥ A
±xi > \ |A|−m (1)

for all finite sets A … I and for all choices of signs.

A system which does not satisfy the above for any choice of m will satisfy
the following for some choice of (f(n)).

Definition 1.2. Suppose that (f(n)).n=1 is a strictly positive nondecreas-
ing sequence satisfying limnQ. f(n)=.. Let (xi)i ¥ I be a sequence of unit
vectors in a Banach space X. We say that (xi) is an f(n)-approximate a1
system if

> C
i ¥ A
±xi > \ |A|−f(|A|)

for all finite sets A … I and for all choices of signs.
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The first two sections after the Introduction concern m-approximate a1
systems. In Section 2 we characterize the Banach spaces which contain an
infinite m-approximate a1 system: they are precisely the spaces whose duals
contain an isometric copy of L1.

In Section 3 we examine the problem of extracting a large subsystem that
is (1+e)-equivalent to the unit vector basis of an1. We show that there exists
such a subsystem with finite complement. The size of the complement,
however, does not depend on m and e alone. To show this we exhibit
systems of size n for which the size of the complementary set is necessarily
of order cn for any c < 1/4. These examples give a partial answer to a
question raised by Elton.

The next two sections concern f(n)-approximate a1 systems. In Section 4
we characterize the Banach spaces which contain f(n)-approximate a1
systems for all (f(n)): they are precisely the spaces which have a spreading
model isometric to the the unit vector basis of a1. We use this result to give
examples of f(n)-approximate a1 systems whose closed linear spans do not
contain any unconditional basic sequence.

In Section 5 we exhibit nontrivial examples of f(n)-approximate a1
systems in the space a1 (and all its isomorphs). In particular, we construct,
for any given (f(n)), examples of both conditionally basic and uncondi-
tionally basic f(n)-approximate a1 systems in a1 which are not equivalent
to the unit vector basis of a1.

The results which we present in Section 5 are based on some observa-
tions about ‘‘lacunary Haar’’ systems in L1 and H1. In Section 6 we pursue
these ideas, proving that there is a lacunary Haar system in L1 which is a
quasi-greedy basis for its linear span.

We use standard Banach space notation and terminology throughout.
For clarity, however, we recall here the notation that is used most heavily.
Let X be a real Banach space with dual space Xg. The unit ball of X is the
set B(X)={x ¥X : ||x|| [ 1}. A subspace Y of X is said to be complemented
if Y is the range of a continuous linear projection on X.

Let (xn) be a sequence in X. The closed linear span of (xn) is denoted
[xn]. We say that a sequence (xn) of nonzero vectors is basic if there exists
a positive constant K such that

> C
m

i=1
aixi > [K > C

n

i=1
aixi >

for all scalars (ai) and all 1 [ m [ n ¥N; (xn) is monotone if we can take
K=1; (xn) is a-unconditional if

> C
n

i=1
eiaixi > [ a > C

n

i=1
aixi >
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for all scalars (ai), all choices of signs ei=±1, and all n \ 1. We say that a
sequence (yk) of nonzero vectors is a block basic sequence with respect to
(xn) if there exist integers 0=n0 < n1 < · · · and scalars (ai) such that

yk= C
nk

i=nk−1+1
aixi (k \ 1).

For 1 [ p <., ap is the space of real sequences (ai) equipped with the
norm ||(ai)||p=(;.

i=1 |ai |
p)1/p. The space of sequences converging to zero

(resp. bounded) equipped with the supremum norm is denoted c0 (resp. a.).
The summing basis of c0 is the basis e1=(1, 0, 0, ...), e2=(1, 1, 0, 0, ...),
etc.

Finally, it is worth emphasizing that we consider only real Banach spaces
in this paper.

2. m-APPROXIMATE a1 SYSTEMS

First we characterize the Banach spaces which contain an infinite
m-approximate a1 system for some m > 0. In this regard, note that
Theorem 0 tells us that X contains an infinite 0-approximate a1 system if
and only if X contains an isometric copy of a1.

ForA, B…N and n ¥N, we writeA < B (respectively,A < n) if max{i: i ¥ A}
<min{i: i ¥ B} (respectively, max{i: i ¥ A} < n).

Theorem 2.1. Suppose that (xi)
.

i=1 is a m-approximate a1 system. Then,
given any decreasing sequence (ei) of positive numbers, there is a subsequence
(yi) of (xi) such that

> C
.

i=1
ai yi > \ C

.

i=1
(1− ei) |ai | (2)

for all (ai) ¥ a1.

Proof. Set n0=0 and suppose that n0 < n1 < · · · < nk have been chosen
to satisfy the following recursive hypothesis. For each choice of signs (gi),
and for all finite A > nk, there exists xg ¥ B(Xg) such that

xg(gixni ) \ 1− ei (1 [ i [ k) (3)

and

xg 1 C
k

i=1
gixni+C

i ¥ A
gixi 2 \ k+|A|−m. (4)
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For k=0, note that (3) is vacuously true and that (4) just follows from the
Hahn–Banach theorem and the definition of a m-approximate a1 system.
So the recursive definition starts. The following claim will establish the
inductive step.

Claim. There exists nk+1 > nk such that if A \ nk+1 and (gi) is any
choice of signs then there exists xg ¥ B(Xg) satisfying (3), (4), and

xg(gixi) > 1− ek+1 (i ¥ A). (5)

Proof of Claim. We argue for a contradiction. If not, then there exists a
choice of signs (gi) and an infinite sequence (Aj), with nk < A1 < · · · <
Aj < · · · , such that, for each j \ 1, whenever (3) and (4) are satisfied for
A=Aj then (5) is not satisfied, i.e.

min
i ¥ Aj
xg(gixi) [ 1− ek+1. (6)

Fix N \ 1. By the recursive hypothesis there exists xg ¥ B(Xg) satisfying
(3) and

xg 1 C
k

i=1
gixni+C

N

j=1
C
i ¥ Aj

gixi 2 \ k+1 C
N

j=1
|Aj |2−m. (7)

Thus (4) is satisfied by xg for A=Aj and for each 1 [ j [N. Hence (6) is
satisfied for each 1 [ j [N. This implies

xg 1 C
k

i=1
gixni+C

N

j=1
C
i ¥ Aj

gixi 2 [ k+C
N

j=1
|Aj |−Nek+1. (8)

But (8) contradicts (7) when N> m/ek+1.
For nk+1 as given by the claim, the recursive hypothesis is satisfied for
k+1. Let yi=xni . Fix (ai) ¥ a1. Let gi=sgn(ai). Then by (3) and a weak
compactness argument there exists xg ¥ B(Xg) such that xg(gi yi) \ 1− ei
for all i \ 1. Thus

>C
i
ai yi > \ xg 1C

i
ai yi 2 \C (1− ei) |ai |. L

Recall that a normalized sequence (yi) which satisfies (2) for some
sequence (ei) of positive numbers decreasing to zero is called an asymptoti-
cally isometric copy of a1. This class of sequences was introduced by Hagler
[11] and has been used recently by Dowling and Lennard [8] in fixed
point theory.
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Theorem 2.2. Let X be a Banach space. The following are equivalent:

(a) X contains an infinite m-approximate a1 system for some m \ 0.
(b) X contains an asymptotically isometric copy of a1.
(c) Xg contains an isometric copy of L1[0, 1].

Proof. Theorem 2.1 yields (a) S (b). Suppose that (xi) is an asymptot-
ically isometric copy of a1 in X which satisfies (2) for some sequence (ei) of
positive numbers decreasing to zero. By passing to a subsequence we may
assume that ;.

i=1 ei <.. This implies that (xi) is a m-approximate a1
system for m=;.

i=1 ei, so (b) S (a). The equivalence of (b) and (c) was
proved in [11] (cf. also [6] for the complex version). L

Remark 2.3. For several further equivalences see [6, 11].

We do not know, however, if a m-approximate a1 system is itself an
asymptotically isometric copy of a1.

Question 2.4. Suppose that (xi) is a m-approximate a1 system. Does
there exist a sequence (ei) of positive numbers decreasing to zero such that

> C
.

i=1
aixi> \ C

.

i=1
(1− ei) |ai |.

for all (ai) ¥ a1?

The following ‘‘global’’ result will be used in Section 6.

Proposition 2.5. Let (xi) be a basic m-approximate a1 system with basis
constant K. Then

min 11
6
,
1
24Km
2 C
.

i=1
|ai | [ > C

.

i=1
aixi > [ C

.

i=1
|ai | (9)

for all (ai) ¥ a1.

Proof. Suppose that ;n
i=1 |ai |=1. Let gi=sgn ai (1 [ i [ n). There

exists xg ¥ Ba(Xg) such that xg(;n
i=1 gixi) \ n−m. Let A={1 [ i [ n :

gixg(xi) [ 3/4}. Then (n− |A|)+(3/4) |A| \ n−m, i.e. |A| [ 4m. We now
consider two cases. For the first case suppose that ; i ¥ A |ai | < 1/3. Then

> C
n

i=1
aixi > \ C

i ¨ A
aixg(xi)− C

i ¥ A
|ai | >

2
3
3
4
−
1
3
=
1
6
.
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For the second case suppose that ; i ¥ A |ai | \ 1/3. Then, since (xi) is basic
with basis constant K, we have

> C
n

i=1
aixi > \

1
2K

max
i ¥ A
|ai | \

1
2K

; i ¥ A |ai |
|A|

\
1
2K
1/3
4m
=

1
24Km

. L

Remark 2.6. The factor 1/m in (9) is best possible up to a multiplicative
constant. To see this, let (xi)

m+1
i=1 be the usual basis of am+1. , where m ¥N.

Then (xi)
m+1
i=1 is a m-approximate a1 system for which ||1/(m+1)

;m+1
i=1 xi ||=1/(m+1).

3. ALMOST ISOMETRIC RESULTS

Our goal in this section is to understand how well a m-approximate a1
system compares with the standard unit vector basis of a1. The following
result shows that, given e > 0 and a m-approximate a1 system, one can
obtain a (1+e)-isometric copy of the unit vector basis of a1 by removing a
finite set of vectors from the system.

Proposition 3.1. Suppose that (xi) is a m-approximate a1 system. Then,
given e > 0, there exists a finite set A such that

> C
i ¥ B
±xi > \ |B|− e (10)

whenever A 5 B=”. In particular, if 0 < e < 1, then

(1− e) C
i ¥ B
|ai | [ > C

i ¥ B
aixi > [ C

i ¥ B
|ai | (11)

for all scalars (ai) whenever A 5 B=”.

Proof. We may assume that m is the least constant satisfying (1). There
exist N \ 1 and a choice of signs (gi)

N
i=1 such that

> C
N

i=1
gixi > <N+e−m.

Let (gi)
.

N+1 be any choice of signs. Then, for n > N, we have

> C
n

i=N+1
gixi > \ > C

n

i=1
gixi >−> C

N

i=1
gixi >

\ (n−m)−(N+e−m)=(n−N)− e.
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Taking A={1, ..., N} gives (10), and (11) follows from (10) by the triangle
inequality. L

The following example shows that the cardinality of a set A which
satisfies (10) does not depend only on e and m, even when (xi) is
1-unconditional. (Recall that (xi) is a-unconditional if ||;.

i=1 ±aixi || [
a ||;.

i=1 aixi || for all scalars (ai) and for all choices of signs.)

Example 3.2. For each n \ 1, let (ei)
n
i=1 be the unit vector basis of anp,

where p is chosen so that n1/p=n−1. Then (ei)
n
i=1 is a 1-approximate a1

system. But it is clear that if A satisfies (10) for e=1/2, then |A|Q. as
nQ..

For (11), on the other hand, the cardinality of A depends only on e and
m, provided that (xi) is 1-unconditional.

Proposition 3.3. (a) Let (xi) be a m-approximate a1 system. There
exists a nonnegative sequence (ei) such that ;.

i=1 ei [ m and

> C
.

i=1
aixi > \ C

.

i=1
ai(1− ei) (12)

for all (ai) ¥ a1.
(b) Let e > 0. If (xi)

.

i=1 is 1-unconditional then A can be chosen to
satisfy (11) with |A| [ Nm/eM.

Proof. (a) For each n ¥ I, select xgn ¥ B(X
g) such that xg

n (;n
i=1 xi) \

n−m. Note that, if m [ n, then xg
n (;m

i=1 xi) \ m−m. By passing to a sub-
sequence, we may assume that xg

n (xm)Q 1− em as nQ.. Thus, for each
m ¥ I,

C
m

i=1
(1− ei)= lim

nQ.
xgn 1 C

m

i=1
xi 2 \ m−m.

Hence ;.

i=1 ei [ m. If (ai) ¥ a1, then

> C
.

i=1
aixi > \ lim

nQ.
xg
n
1 C
n

i=1
aixi 2=C

.

i=1
ai(1− ei).

(b) For e > 0, let A={i ¥ I : ei > e}. Then |A| [ Nm/eM. If B is disjoint
from A then (12) and 1-unconditionality give (11). L

Recall that a sequence (yi) is suppression 1-unconditional if, whenever
A ı B ı I, then ||;A ai yi || [ ||;B ai yi || for all scalars (ai). We shall now
show that Proposition 3.3(b) does not hold if ‘‘1-unconditional’’ is
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replaced by ‘‘suppression 1-unconditional’’. The following theorem is a
‘‘local’’ formulation of this fact.

Theorem 3.4. Let a ¥ (0, 1/4) and m ¥ (0, 1). If n is a power of 2 then
there exists a norm || · || on Rn with the following properties:

(i) (ei)
n
i=1 is a suppression 1-unconditional normalized basis of

(Rn, || · ||).
(ii)

> C
n

i=1
±ei > \ n−m (13)

for all choices of signs.

(iii) For every A ı {1, ..., n}, with |A|=1+K(3/4+a) nL, there exists
a nonzero vector x, with supp x ı A, such that

||x||1 \ 11+
4am

3+8a−4am
2 ||x||. (14)

Let I={1, 2, ..., n}. Since n is a power of 2, there exist n sets Si ı I
(1 [ i [ n) such that (here g denotes the symmetric difference)

|Si DSj |=|Si D(I0Sj)|=n/2 (i ] j).

Indeed, one can simply take the Si’s (under the obvious correspondence) to
be the rows of the Hadamard matrix of order n (see, e.g., [5]).

For 1 [ i [ n, we say that a set S ı I is i-large if either |SgSi | < n/4 or
|(I0S)gSi | < n/4. Note that, for each 1 [ i [ n, the collection of all
i-large sets is closed under complementation.

First we prove that every S ı I is i-large for at most one value i. So
suppose that S is i0-large and that j ] i0. Then either |S DSi0 | < n/4 or
|S D(I0Si0 )| < n/4. We shall assume that the former holds (the proof in the
latter case is similar). Since |Si0 DSj |=n/2, the triangle inequality gives

|S DSj | \ |Si0 DSj |− |SD Si0 | >
n
2
−
n
4
=
n
4
.

Similarly, |(I0S) DSj | > n/4. Thus, S is not j-large.
Let y=(yi)i ¥ I be a vector whose coordinates belong to the interval
[−1, 1]. We set P(y)={i ¥ I : yi > 1−m} and N(y)={i ¥ I : yi <
−1+m}. For S ı I, we say that y is S-admissible and that y is obtained
from S if the following conditions hold:

(a) |yi | [ 1−m whenever S is i-large.
(b) P(y) ı S and N(y) ı I0S.
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Note that if y is S-admissible then −y is (I0S)-admissible. This follows
from the fact that the collection of i-large sets is closed under complemen-
tation.

A vector y is said to be admissible if y is S-admissible for some S ı I. Let
F denote the collection of all admissible vectors. Then F is symmetric, i.e.,
if y ¥ F then −y ¥ F. Now we can define the norm || · ||:

>C
i ¥ I
xiei >=max

y ¥ F
C
i ¥ I
xi yi. (15)

The symmetry of F guarantees that (15) defines a norm. The fact that this
norm is suppression 1-unconditional is an immediate consequence of the
following easily checked property of F: if y ¥ F and z is obtained from y by
replacing some of the coordinates of y by zeros, then z ¥ F. It is also easy
to check that ||ei ||=1 for all 1 [ i [ n.

From now on the proof is similar to that of [7]. We include it here for
the sake of completeness.

Proof of (ii). Let g=(gi)
n
i=1 be a choice of signs. Define y=(yi) thus:

yi=3
gi if P(g) is not i-large,
(1−m) gi if P(g) is i-large.

Clearly, y is P(g)-admissible, so y ¥ F. Since P(g) is i-large for at most one
index i0, we have

> C
n

i=1
giei > \ C

n

i=1
gi yi \ 1 C

n

i=1
g2i −12+(1−m) g2i0=n−m,

which proves (13). L

Proof of (iii). Suppose A … I with |A|=1+K(3/4+a) nL. Choose i0 ¥ A
and let Ã=A0{i0} (so that |Ã|=K(3/4+a) nL). We define a vector x, with
supp x=A, thus:

xi=˛
|Ã|−(3/4) n for i=i0,
1 for i ¥ Ã 5 Si0 ,
−1 for i ¥ Ã 5 (I0Si0 ) ,
0 otherwise.

Now let us show that ||x|| satisfies (14). Let y be an admissible vector that is
obtained from S ı I. Suppose that

|Ã 5 Si0 5 P(y)|+|Ã 5 (I0Si0 ) 5N(y)| > 3n/4. (16)
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Since P(y) ı S and N(y) ı I0S, we have

|Si0 5 S|+|(I0Si0 ) 5 (I0S)| > 3n/4.

Thus,

|Si0 DS| < n/4.

So S is i0-large. Hence |yi0 | [ 1−m, and so

C
i ¥ I

xi yi=xi0 yi0+C
i ¥ Ã

xi yi

[ (|Ã|−(3/4) n)(1−m)+|Ã|.

(17)

On the other hand, if (16) does not hold, then

C
i ¥ I
xi yi [ |xi0 |+|Ã|−(|Ã|−(3/4) n) m

[ (|Ã|−(3/4) n)(1−m)+|Ã|. (18)

It follows from (17) and (18) that

||x|| [ |Ã|+(1−m)(|Ã|−(3/4) n). (19)

But

||x||1=|xi0 |+|Ã|

=(|Ã|−(3/4) n)+|Ã|

\ ||x||+m(|Ã|−(3/4) n)

(by (19))

\ 11+m 1 (1−m)+ |Ã|

|Ã|−(3n/4)
2−12 ||x||

(by (19) again)

\ 11+m 1 (1−m)+3+4a
4a
2−12 ||x||

(since |Ã| \ (3/4+a) n)

=11+ 4am
3+8a−4am

2 ||x||,

which proves (14). L
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Remark 3.5. The construction of the norm in Theorem 3.4 is explicit
and determinstic. A ‘‘random’’ argument can be given (see [7] for the
details) to extend Theorem 3.4 to all A satisfying |A| > (1/2+a) n,
although this argument has the defect that it does not give the norm expli-
citly. By the ‘‘almost isometric’’ part of a theorem of Elton [9, Theorem 1],
it is not possible to extend the result to sets with |A| < (1/2−a) n.

4. f(n)-APPROXIMATE a1 SYSTEMS

Henceforth (f(n)).n=1 will denote a strictly positive nondecreasing
sequence satisfying limnQ. f(n)=.. Let us first observe that the norm of
the linear span of an f(n)-approximate a1 system does indeed behave like
the a1 norm for moderately sized coefficients. It is convenient here to
extend the definition of f to R+ by taking f(x)=f(KxL)

Proposition 4.1. Let (xi) be an f(n)-approximate a1 system and
suppose that 0 < d<M<.. Then, for all scalars (ai) satisfying d[ |ai|[M,
we have

> C
i ¥ A
aixi > \ C

i ¥ A
|ai |−Mf 11 C

i ¥ A
|ai |2;d2 .

Proof. Let gi=sgn ai. Then, by the triangle inequality,

> C
i ¥ A
aixi >=>C |ai | gixi >

\M > C
i ¥ A
gixi >−1 C

i ¥ A
(M−|ai |)2

\M(|A|−f(|A|))−M |A|+C
i ¥ A
|ai |

\ C
i ¥ A
|ai |−Mf 11 C

i ¥ A
|ai |2;d2 .

The last inequality follows from the fact that min |ai | \ d, which implies
|A| [ (; i ¥ A |ai |)/d. L

We now aim to characterize the Banach spaces which contain an infinite
f(n)-approximate a1 system for slowly increasing f(n). To that end let us
recall the notion of spreading model (see, e.g., [3]). Let (xi) be a sequence
in a Banach space X and let (si) be a basis for a Banach space (Y, | · |).
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Then (Y, | · |) is said to be a spreading model for (xi) if, for all k \ 1 and
for all scalars a1, ..., ak, we have

: C
k

i=1
aisi := lim

n1 Q.
n1 < · · · < nk

> C
k

i=1
aixni >.

Recall that every normalized sequence has a subsequence (xi) which has a
basic spreading model.

Proposition 4.2. Suppose that (xi)
.

i=1 is a normalized sequence which
has spreading model isometrically equivalent to the unit vector basis of a1.
Then, given (f(n)), (xi) has a subsequence (yi) which is an f(n)-approxi-
mate a1 system.

Proof. Set n0=0. For k \ 1, select nk > nk−1 with f(nk) > 2k. Since (si)
(the basis of the spreading model) is isometrically equivalent to the unit
vector basis of a1, we may choose a strictly increasing sequence (mk)

.

k=1 of
positive integers such that if 1 [ n [ nk+1 and mk < j1 < · · · < jn, then

> C
n

i=1
±xji > \ n−(f(nk)−2k).

Set yk=xmk . Suppose that k \ 0, that nk < n [ nk+1, and that 1 [ j1
< · · · < jn. Then

> C
n

i=1
±yji > \ > C

n

j=k+1
±yj >−k

\ (n−k)−(f(nk)−2k)−k

=n−f(nk) \ n−f(n). L

Proposition 4.3. Suppose that (xi)
.

i=1 is an f(n)-approximate a1
system, where infn \ 1 f(n)/n=0. Then the spreading model associated to
(xi) is isometrically equivalent to the unit vector basis of a1.

Proof. Fix e ¥ (0, 1) and N \ 1. It suffices to show that there exists
M ¥N such that if M [ n1 < · · · < nN then ||;N

i=1 ±xni || \N− e for all
choices of signs (for then it follows that ||;N

i=1 aixni || \ (1− e);
N
i=1 |ai | for

all real scalars (ai)). Suppose, to derive a contradiction, that there is no
such M. Then there exist finite sets Ai (i=1, 2, ...), with |Ai |=N and with
A1 < A2 < · · · , and there exists a choice of signs (gj) such that
||; j ¥ Ai gjxj || < N− e for each i. Thus, for each k \ 1, we have
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Nk−f(Nk) [ > C
k

i=1
C
j ¥ Ai

gjxj >

[ C
k

i=1

> C
j ¥ Ai

gjxj >

[ C
k

i=1
(N− e)=Nk−ke.

So f(Nk) \ ek for all k, which contradicts the fact that (f(n)) is a positive
nondecreasing sequence satisfying infn \ 1 f(n)/n=0. L

Combining the previous two results, we obtain the following charac-
terization of Banach spaces which contain f(n)-approximate a1 systems for
all (f(n)).

Theorem 4.4. Let X be a Banach space. The following are equivalent:

(i) X has a spreading model isometrically equivalent to the unit vector
basis of a1.

(ii) X contains an f(n)-approximate a1 system for some (f(n))
satisfying infn \ 1 f(n)/n=0.

(iii) For all (f(n)), X contains a basic f(n)-approximate a1 system.

Proof. (iii) S (ii) is clear and (ii) S (i) is Proposition 4.3. To show
(i) S (iii), let (xi) have spreading model isometrically equivalent to the
usual a1 basis. If (xi) has no weakly convergent subsequence, then (xi) has
a basic subsequence [18]. If (xi) has a weakly convergent subsequence,
then we may assume, after passing to a subsequence, that yi=x2i−x2i−1 is
weakly null and hence has a basic subsequence [4]. Clearly, (yi/2) also
has spreading model isometrically equivalent to the a1 basis. So we can take
(xi) to be basic. Arguing as in Proposition 4.2, we see that (xi) has a
subsequence that is an f(n)-approximate a1 system. L

Remark 4.5. Beauzamy and Lapresté [3] characterized the existence of
a spreading model isomorphically equivalent to the unit vector basis of a1.

The following renorming result is now an immediate consequence of a
deep result of Odell and Schlumprecht [17, Corollary 3.3] and of the
equivalence of (i) and (ii) in Theorem 4.4.

Corollary 4.6. Let X be a separable Banach space. The following are
equivalent:
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(i) X does not contain a subspace isomorphic to a1.
(ii) There exists an equivalent norm ||| · ||| on X such that if (xn) is an

f(n)-approximate a1 system with respect to ||| · ||| then f(n) > dn for some
d > 0.

Our next goal is to use Theorem 4.4 to give examples of f(n)-ap-
proximate a1 systems which have no unconditional basic subsequences. To
that end, we must recall the definition of the mixed Tsirelson spaces. Given
a sequence (Mj)

.

j=0 of compact families of finite subsets of N, and given a
sequence (hj)

.

j=0 of real numbers converging to 0, the mixed Tsirelson
space T[(Mj, hj)

.

j=0] is defined in [2] as the completion of the linear space
c00 under the norm || · || given as follows. For x ¥ c00,

||x||=max 3 ||x||., sup
j
hj sup 3 C

n

i=1
||Eix|| : (Ei)

n
i=1 is Mj-admissible44 ,

where, for E …N, Ex is the restriction of x to E and, for a family M, an
M-admissible sequence (Ei)

n
i=1 is a sequence of subsets of N such that

E1 < E2 < · · · < En and such that the set {min E1, min E2, ..., min En}
belongs to M.

In the definition of the spaces X and Xu below, (Mj)
.

j=0 is an appropri-
ate subsequence of (Sn)

.

n=1, where Sn denotes the nth Schreier family
(introduced in [1]) defined inductively as follows:

S0={”} 2 {{n} : n ¥N},

and, for k \ 0,

Sk+1={”} 2 30
n

i=1
Ai : n ¥N, Ai ¥Sk, n [ A1 < A2 < · · · < An 4 .

Let us also recall that an infinite-dimensional Banach space is heredi-
tarily indecomposable (H.I.) if X does not have a subspace which can be
expressed as a topological direct sum Y À Z, with Y and Z infinite-dimen-
sional. Observe that an H.I. space has no unconditional basic sequence.
For suppose that (bn)

.

n=1 is an unconditional basic sequence. Then the
subspace generated by (bn) can be decomposed as a direct sum of the sub-
spaces generated by (b2n)

.

n=1 and by (b2n−1)
.

n=1

Proposition 4.7. The H.I. space X introduced in [2] has a spreading
model isometrically equivalent to the unit vector basis of a1.

Proof. We refer the reader to [2, p. 979] for the detailed definitions of
the spaces X and Xu which are summarized below. Briefly, Xu=
T[(Mj, 1/mj)

.

j=0], where M0=S0, m0=2, and, for j \ 1, mj > m
mj−1
j−1 . In

particular, m1 > 4, which we use below.
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These spaces are the completions of c00 equipped with norms defined by
certain classes of linear functionals defined inductively as follows. For
j \ 0, set K0j={±en : n ¥N}. Assume that {Knj }

.

j=0 have been defined.
Then we set Kn=1.

j=0 K
n
j , and for j \ 0,

Kn+1j =K
n
j 2 3

1
mj
(f1+·· ·+fd) : 0

d

i=1
supp fi(supp f1 < · · · < supp fd)

is Mj-admissible and f1, ..., fd ¥Kn4 .

Set Aj=1.

n=1 K
n
j (j \ 0) and K=1.

n=0 K
n. The norm || · ||u of Xu is defined

thus:

||x||u=sup{f(x): f ¥K}.

To obtain X one defines certain sets Lnj …K
n
j , Bj=1.

n=1 L
n
j … Aj, and

L=1.

j=0 Bj …K. The norm || · || of X is defined thus:

||x||=sup{f(x): f ¥ L}.

An alternative definition of X (see [2, Remark 3.1]) is the following. For
x ¥ c00,

||x||=max 3 ||x||., sup 3 1
m2j

C
n

k=1
||Ekx|| : j \ 0, n \ 1, {E1 < · · · < En}

isM2j-admissible4 , sup 3 |f(x)|: f ¥ 0
.

j=0
B2j+1 44 .

The construction in X is the same as the standard spreading model iso-
metric to a1 in the Tsirelson space T. Indeed, let ei=x2i−1+x2i, where (xi)
is the usual basis of X. Since m1 > 4, the norm of ei is achieved by parti-
tions from the level M0=S1, therefore ||ei ||=1. For any k < n1 <
n2 < · · · < nk, we have that {2n1−1, 2n1, 2n2−1, 2n2, ..., 2nk−1, 2nk} ¥S1,
whence ||;k

i=1 xni ||=k. Therefore, the spreading model generated by (ei) is
isometric to a1. L

Remark 4.8. Odell and Schlumprecht [16] constructed spreading
models isometric to a1 in T hereditarily, i.e., in every infinite dimensional
subspace Y of T there exists (yi) with spreading model 1-equivalent to the
unit vector basis of a1. We can show a similar hereditary result for Xu and
X. The proof requires more technical details from [2] and thus we chose
not to include it here, since it is further away from the main topic of the
present paper.
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Remark 4.9. The H.I. space GM (introduced in [10]) has isometrically
the same spreading models as the space S (introduced in [19]) [20]. S has
a spreading model isomorphic to a1 [14]. Modifying the construction of
[14] slightly shows that S has a1 isometrically as a spreading model [15].

Corollary 4.10. Given (f(n)), there exists an H.I. Banach space X
which has a basis (xi) that is an f(n)-approximate a1 system. In particular, X
does not contain any unconditional basic sequence.

Remark 4.11. Konyagin and Temlyakov [13] defined a basis (xi) to be
superdemocratic if there exists a positive constant C such that, whenever
|A|=|B|, then

1
C
> C
i ¥ A
gixi > [ > C

i ¥ B
g −ixi > [ C > C

i ¥ A
gixi >

for all choices of signs (gi)i ¥ A and (g −i)i ¥ B. An example is given in [13] of a
superdemocratic basis which is not unconditional. Note that the bases
given by Corollary 4.10 are superdemocratic and their linear spans do not
contain any unconditional basic sequence. In fact, provided f(n)=o(n),
we have

lim
nQ.

sup
|A|=|B|=n

||; i ¥ A gixi ||
||; i ¥ B g

−

ixi ||
=1,

where the supremum is taken over all possible choices of signs.

5. f(n)-APPROXIMATE a1 SYSTEMS IN a1

In this section we construct some nontrivial examples of f(n)-approxi-
mate a1 systems in the space a1 itself. Actually, our construction can be
carried out without much extra complication in any space that is
isomorphic to a1. For any given (f(n)), we shall construct two exam-
ples of f(n)-approximate a1 systems: first, an unconditional basic
sequence which is not equivalent to the a1-basis; secondly, a conditional basic
sequence.

As motivation for these results let us recall that a sequence in an L1
space is equivalent to the unit vector basis of a1 if it is, roughly speaking,
‘‘sufficiently disjoint.’’ Here is one such criterion for sufficient disjointness
which we state without proof.
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Proposition 5.1. Let (fn)
.

n=1 be a normalized sequence in an L1 space.
Suppose that there exist t > 0 and a sequence (An)

.

n=1 of disjoint measurable
sets such that

F
An
|fn |− C

m ] n
F
Am
|fn | \ t (n \ 1).

Then ||; anfn || \ t; |an | for all (an) ¥ a1.
So our examples show that an f(n)-approximate a1 system, even for very

slowly increasing (f(n)), does not necessarily possess enough disjointness
to be equivalent to the a1 basis. It is ususally possible, on the other hand, to
extract an a1 subsequence.

Proposition 5.2. Suppose that k ¥ (0, 1) and that (xi)
.

i=1 is an f(n)-
approximate a1 system in an L1 space for f(n)=kn. Then (xi)

.

i=1 has an a1
subsequence.

Proof. Suppose, to derive a contradiction, that (xi) has a weakly con-
vergent subsequence. Then, passing to a subsequence, we may assume that
(yi)

.

i=1 is weakly null, where yi=x2i−x2i−1. Since L1 spaces have the weak
Banach–Saks property [21], it follows that (after passing to a subsequence
of (yi) and relabelling) (1/n);n

i=1 yi Q 0. On the other hand,

> C
n

i=1
yi >=> C

n

i=1
(x2i−x2i−1)> \ 2n−f(2n)=2n(1−k),

which yields the contradiction. Finally, it is well-known that every sequence
in an L1 space which has no weakly convergent subsequence has an a1
subsequence. L

Let us recall the definition of the L1-normalized Haar system on [0, 1].
Let h00 — 1. For n \ 0 and 1 [ k [ 2n, we define hnk thus:

hnk=˛
2n on [(k−1)/2n, (2k−1)/2n+1)
−2n on [(2k−1)/2n+1, k/2n)
0 elsewhere.

The dyadic Hardy space H1 has the following norm:

>a00h00+C
.

n=0
C
2n

k=1
ankh

n
k
>=F

1

0

1 (a00h00)2+C
.

n=0
C
2n

k=1
(ankh

n
k)
221/2 dt.

Note that H1 is isometrically isomorphic to a subspace of L1[0, 1]. To see
this, observe that the mapping

f=a00h
0
0+C

.

n=0
C
2n

k=1
ankh

n
k W (a

n
kh
n
k)n, k
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defines an isometric embedding from H1 into L1(a2(Z×Z)). Since L1[0, 1]
contains a subspace linearly isometric to a2, namely the closed linear span
of a sequence of independent gaussian random variables, it follows that
L1(a2) is linearly isometric to a subspace of L1(L1), which in turn is linearly
isometric to L1[0, 1].

Note also that each ‘‘layer’’ (hni )
2n

i=1 of the Haar system is isometrically
equivalent to the unit vector basis of a2

n

1 :

> C
2n

k=1
akh

n
k
>=C

2n

k=1
|ak |. (20)

Proposition 5.3. Given (f(n)), there exists an increasing sequence
(ni)

.

i=0 of nonnegative integers such that the ‘‘lacunary Haar system’’
((hnij )

2ni
j=1)

.

i=0 in H1 is an f(n)-approximate a1 system.

Proof. Set n0=0. Suppose that n0 < n1 < · · · < nk have been chosen so
that Hk=((h

ni
j )
2ni
j=1)

k
i=0 satisfies

>C
A
±hnj > > |A|−f(|A|) (21)

for all A ıHk and for all choices of signs. Then there exists ek > 0 such
that

>C
A
±hnj > > |A|−f(|A|)+ek (22)

for all A ıHk and for all choices of signs. By a uniform integrability
argument there exists d > 0 such that if l(1(j, n) ¥ G supp hnj ) < d, where l
denotes Lebesgue measure, then for every g=; (j, n) ¥ G a

n
j h
n
j , we have

>g+C
A
±hnj > > ||g||+>C

A
±hnj >− ek

for all A ıHk and for all choices of signs. Select nk+1 so large that
f(Nd2nk+1M) > 2|Hk |, and let Hk+1=Hk 2 (hnk+1i )

2nk+1
i=1 . Suppose that

A ıHk+1. We shall show that (21) is satisfied by A. Write A=B 2 C,
where B ıHk and C ı (hnk+1i )

2nk+1
i=1 . There are two cases to consider. First,

suppose that |C| < Nd2nk+1M. Then l(supp(;C ±h
n
i ))=|C| 2

−nk+1 < d. Hence,
by the choice of d, we have

>C
A
±hni > > >C

B
±hni >+>C

C
±hni >− ek

> (|B|−f(|B|)+ek)+|C|− ek

232 DILWORTH, KUTZAROVA, AND WOJTASZCZYK



(by (22) and (20))

=|A|−f(|B|)

\ |A|−f(|A|).

On the other hand, if |C| \ Nd2nk+1M, then

>C
A
±hni > > >C

C
±hni >−>C

B
±hni >

\ |C|− |B|

=|A|−2 |B|

\ |A|−2 |Hk |

> |A|−f(Nd2nk+1M)

(by the choice of nk+1)

\ |A|−f(|A|). L

Remark 5.4. For k=1, 2, ..., let rk=21−k;2k−1

i=1 h
k−1
i be the sequence

of Rademacher functions. Then (rk) is equivalent in H1 to the unit vector
basis of a2 and its span is complemented by the orthogonal projection.
Since the linear span of every lacunary Haar system contains a subsequence
of the Rademacher functions, it follows that the closed linear span of a
lacunary Haar system contains a complemented block subspace isomorphic
to a2.

We shall now transfer the above example from H1 to a1 by a localization
argument.

Theorem 5.5. Suppose that X is isomorphic to a1. Then, given (f(n))
and a > 1, X contains a normalized basic sequence (yi) satisfying the
following:

(i) (yi) is an (f(n))-appproximate a1 system.
(ii) (yi) is a-unconditional.

(iii) For k=1, 2, ..., the unit vector basis of ak2 is uniformly equivalent
to a uniformly complemented block basis of (yi) (i.e., the norms of the
projections are uniformly bounded). (This implies, in particular, that [yi] is
not isomorphic to a1 since a1 does not contain uniformly complemented
uniformly equivalent copies of ak2 .)
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The proof of Theorem 5.5 requires two technical lemmas. First let us
recall that if X and Y are two n-dimensional normed spaces, then their
Banach–Mazur distance d(X, Y) is defined thus:

d(X, Y)=inf{||T|| ||T−1|| : T : XQ Y is an isomorphism}.

Lemma 5.6. Let (f(j)).j=1, a > 1, and k ¥N be given. There exist
m ¥N, n ¥N and e > 0 such that, whenever d(X, an1) < 1+e, then there exist
m unit vectors (xi)

m
i=1 in X satisfying the following:

(i) (xi)
m
i=1 is an f(j)-approximate a1 system.

(ii) (xi)
m
i=1 is an a-unconditional basic sequence.

(iii) a
k
2 is uniformly equivalent to a uniformly complemented block basis

of (xi)
m
i=1.

Proof. By Proposition 5.3, there is a lacunary Haar system which is an
f(n)-approximate a1 system. Let (yi)

m
i=1 be an enumeration of the the first

k layers of this system. Then (yi)
m
i=1 is 1-unconditional and satisfies condi-

tions (i) and (iii). Since H1 is isometric to a subspace of L1, given g > 0, we
can find a positive integer n such that [yi]

m
i=1 is (1+g)-isomorphic to a

subspace of an1. The lemma now follows by a standard perturbation
argument. L

The following lemma is implicit in James’s proof that a1 is not distortable
[12].

Lemma 5.7. Let (ei)
.

i=1 and (ai)
.

i=1 be sequences of positive numbers,
and let (ni)

.

i=1 be a sequence of positive integers. Let X be isomorphic to a1.
There exist subspaces Fi ıX satisfying the following:

(i) d(Fi, a
ni
1 ) < 1+ei;

(ii)

> C
.

i=n
xi > \ (1−an) C

.

i=n
||xi ||

for all n \ 1 and all xi ¥ Fi.

Proof of Theorem 5.5. It will be clear from the construction (and from
Lemmas 5.6 and 5.7) that the sequence (yi) can always be chosen to be
a-unconditional provided a > 1. Therefore, to avoid unnecessary complica-
tion, we shall omit the verifiication of (ii).

Select b > 0 and a positive sequence ((g(n)) such that

b+3g(n)=f(n) (n \ 1).
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Fix k \ 1 and let nk, mk, and ek be as given by Lemma 5.6 when applied to
the sequence (g(n)/2k).n=1. Now choose positive integers pm ‘. (m \ 1)
such that

g(n1+n2+·· ·+npm ) > 2(n1+n2+·· ·+nm). (23)

Next choose positive numbers ai (i \ 1) such that

(n1+n2+·· ·+npi+1 ) ai < b. (24)

Apply Lemma 5.7 to (ei), (ai), and (ni), to find subspaces Fi satisfying the
conclusion of the lemma.

By Lemma 5.6, for each k \ 1 there exist vectors (xki )
mk
i=1 in Fk satisfying

(i)–(iii) of Lemma 5.6 (applied to (g(n)/2k).n=1). Let (yi)
.

i=1 be the
enumeration of the sequence x11, ..., x

1
m1 , x

2
1, ..., x

2
m2 , ..., and for k \ 1, let

Bk={i: yi ¥ Fk}.
By Lemma 5.6, it is clear that (yi) satisfies condition (iii) of

Theorem 5.5. So it remains only to verify that (yi) is an f(n)-approximate
a1 system. Suppose that A …N and that N=|A| satisfies

n1+n2+·· ·+npm <N [ n1+n2+·· ·+npm+1 .

(The verification is similar but easier if N [ n1+·· ·+np1 .) Then

> C
i ¥ A
±yi > \ > C

.

j=m+1

1 C
i ¥ A 5 Bj

±yi 2>−(n1+·· ·+nm)

(by the triangle inequality since |Bj |=mj [ nj)

\ (1−am) C
.

j=m+1

> C
i ¥ A 5 Bj

±yi >−(n1+·· ·+nm)

(by Lemma 5.7)

\ (1−am) C
.

j=m+1

1 |A 5 Bj |−
g(|A 5 Bj |)
2 j
2−(n1+·· ·+nm)

(since (yi)i ¥ Bj is a (g(n)/2 j)-approximate a1 system)

\ (1−am) 1 C
.

j=1
|A 5 Bj |− (n1+·· ·+nm)2

−g(|A|) 1 C
.

j=1
2−j2−(n1+·· ·+nm)

\ (1−am) |A|−g(|A|)−2(n1+·· ·+nm)

\ |A|−b−g(|A|)−2(n1+·· ·+nm)

ON APPROXIMATE a1 SYSTEMS 235



(by (24) since |A|=N [ n1+n2+·· ·+npm+1 .)

\ |A|−b−3g(|A|)

(by (23) since |A|=N > n1+·· ·+npm )

> |A|−f(|A|)

by the choice of b and (g(n)). This proves that (yn) is an f(n)-approx-
imate a1 system. L

We obtain a strengthening of Theorem 4.4.

Corollary 5.8. Let X be a Banach space. The following are equivalent:

(i) X has a spreading model that is isometrically eqivalent to the unit
vector basis of a1.

(ii) For all (f(n)), X contains an f(n)-approximate a1 basic sequence
whose closed linear span is not isomorphic to a1.

Proof. When X does not contain a1, the result is an immediate conse-
quence of Theorem 4.4. When X does contain a1, the result follows from
(iii) of Theorem 5.5. L

We can also consider the Haar system in L1 instead of H1. Let us observe
that every lacunary Haar system in L1 is a conditional monotone basis for
its linear span. The conditionality follows from the easily verified fact that
the full Haar system is equivalent to a block basis of every lacunary Haar
system. All the proofs of this section go through mutatis mutandis for the
lacunary Haar system in L1 to yield the following analogue of
Theorem 5.5.

Theorem 5.9. Suppose that X is isomorphic to a1. Then, given (f(n))
and a > 1, X contains a normalized basic sequence (yn) satisfying the
following:

(i) (yn) is an (f(n))-appproximate a1 system.
(ii) (yn) is a conditional basis for its closed linear span with basis

constant at most a.

(iii) The unit vector basis of ak2 (k \ 1) is uniformly equivalent to a
block basis of (yn).

If X=a1, we may also take (yi) to be a monotone basic sequence.
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6. LACUNARY HAAR SYSTEMS ARE QUASI-GREEDY

Let (xn)
.

n=1 be a normalized basis for X with biorthogonal functionals
(xgn )

.

n=1. For each x ¥X and m=1, 2, ... we define

Gm(x)=C
n ¥ A
xg
n (x) xn,

where A is a set of cardinality m such that min{|xg
n (x)|: n ¥ A} \

max{|xg
n (x)|: n ¥N0A}. Note that A is not necessarily uniquely defined.

We say that the basis (xn) is quasi-greedy if Gm(x)Q x for each x ¥X.

Theorem 6.1. Let e > 0. There exists an increasing sequence of integers
(nj)

.

j=0 such that the lacunary Haar system ((h
ni
j )
2ni
j=1)

.

i=0 in L1[0, 1] is a
quasi-greedy basis satisfying ||Gm(x)|| [ (1+e) ||x|| for all x in its closed linear
span and for all m \ 1.

The proof of Theorem 6.1 uses two auxiliary results. The first is an
obvious symmetry property of the Haar system.

Lemma 6.2. Every reaarangement of the Haar system which merely
changes the order of terms within each layer of the Haar system (i.e., so that
every hki on layer k comes before every h

k+1
i on layer k+1 after the rearran-

gement) is a monotone basis.

Proof. Clearly, every such rearrangement of the Haar system is a
martingale difference sequence with respect to the standard dyadic
filtration. L

For a proof of the following we refer the reader to [22].

Theorem A. Let (xn) be a basis for the Banach space X. The following
are equivalent:

(i) (xn) is a quasi-greedy basis.
(ii) There exists a constant C such that ||Gm(x)|| [ C ||x|| for all x in the

linear span of (xn) and for all m \ 1.

Proof of Theorem 6.1. Select ei a 0 such that <.

i=1 (1+ei) < 1+e. Set
n0=1 and suppose that n0 < n1 < · · · < nk have been chosen. Let (xi)

Nk
i=1 be

the lexicographical ordering of the elements of 1k
j=0 12nj

i=1 h
nj
i and let

Fk=[xi]
Nk
i=1. We shall assume as an inductive hypothesis that

||Gm(x)|| [ 1D
k

i=1
(1+ei)2 ||x|| (x ¥ Fk). (25)
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Let dk+1=ek+1/Nk. By uniform integrability there exists ak+1 > 0 such that
if x ¥ Fk then

||x+y|| \
1

1+ek+1
(||x||+||y||) (26)

whenever y ¥ L1 satisfies l(supp y) < ak+1.
Choose nk+1 such that 21−nk+1/dk+1 < ak+1. Fix m \ 1. Suppose that
||x+y||=1, where x ¥ Fk and y ¥ [hnk+1i ]

2nk+1
i=1 . Note that ||y|| [ 2 (since the

Haar system is monotone) and that

Gm(x+y)=Gm1 (x)+Gm2 (y),

for some m1, m2 with m=m1+m2. We now consider two cases. First
suppose that the smallest nonzero coefficient in the basis expansion of
Gm(x+y) has absolute value at least dk+1. Since l(supp(hnk+1i ))=2

−nk+1, we
have

l(supp Gm2 (y)) <
||y||

2nk+1dk+1
[

2
2nk+1dk+1

< ak+1.

Thus

||Gm(x+y)|| [ ||Gm1 (x)||+||Gm2 (y)||

[ 1D
k

i=1
(1+ei)2 (||x||+||Gm2 (y)||)

(by (25))

[ 1D
k+1

i=1
(1+ei)2 ||x+Gm2 (y)||

(by (26))

[ 1D
k+1

i=1
(1+ei)2 ||x+y||,

where the last line follows from Lemma 6.2. For the second case we assume
that the smallest nonzero coefficient in the basis expansion of Gm(x+y) has
absolute value at most dk+1. Then |xgi (x−Gm1 (x))| [ dk+1 for 1 [ i [Nk.
Thus, by the choice of dk+1, we have

||x−Gm1 (x)|| [Nkdk+1 < ek+1.
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Thus

||Gm(x+y)||=||Gm1 (x)+Gm2 (y)||

[ ||x+Gm2 (y)||+||x−Gm1 (x)||

[ ||x+y||+ek+1

(by Lemma 6.2)

=(1+ek+1) ||x+y||

[ 1D
k+1

i=1
(1+ei)2 ||x+y||,

which establishes the inductive hypothesis for k+1. Thus (xn) satisfies (ii)
of Theorem A, with C=<.

i=1 (1+ei) < 1+e. L

Remark 6.3. Recall that the full Haar system is not a quasi-greedy
basis of L1. To see this most easily, fix n \ 1 and e > 0. Let xn=h

0
0+

;n−1
k=0 ((1+e) h

2k
1 +h

2k+1
1 )). Then, for sufficiently small e, we have ||xn || [ 2.

But Gn(x)=;n−1
k=0 ((1+e) h

2k
1 ), so ||Gn(x)|| \ n/4. Since n is arbitrary,

Theorem A implies that the Haar system is not quasi-greedy.

Remark 6.4. The ‘‘dual’’ version of Theorem 6.1 is false. The L.-normal-
ized Haar system is a basis for its closed linear span in L.. However, (hnk1 )
is equivalent to the summing basis of c0 for every subsequence (nk). It is
easy to see that the summing basis is not quasi-greedy.

For our final result, let us recall the definition of the best m-term
approximation. For x ¥X and m=0, 1, ... we set

sm(x)=inf{||x−Sn ¥ Aanxn ||: |A| [ m}.

Then the error of the greedy algorithm as compared to the error in the best
m-term approximation is measured by the following quantity [22]:

em=sup
x ¥X

||x−Gm(x)||
sm(x)

1with
0
0
=12.

Theorem 6.5. Given an unbounded increasing sequence (f(n)), with
f(1) \ 73, there exists a lacunary Haar system (xn) in L1 such that en [ f(n)
for all n ¥N.

The proof of Theorem 6.5 uses the following result which is a special
case of [22, Theorem 5]. We refer the reader to [22] for the proof.
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Theorem B. Let (g(n)) be a positive increasing sequence. Suppose that
(xn) is a normalized basis for X such that

1
g(|A|)

C
n ¥ A
|an | [ > C

n ¥ A
anxn > [ C

n ¥ A
|an |,

for all finite A …N and scalars (an). Then en [ 3g(n)+1 for all n.

Proof of Theorem 6.5. Let g(n)=(f(n)−1)/72. Then (g(n)) is an
unbounded increasing sequence with g(1) \ 1. By the analogue of Proposi-
tion 5.3 for the L1 norm there exists a lacunary Haar system (xn)

.

n=1 which
is a g(n)-approximate a1 system. By Proposition 2.5 ,

1
24g(|A|)

C
n ¥ A
|an | [ > C

n ¥ A
anxn > [ C

n ¥ A
|an |.

Thus, by Theorem B, en [ 72g(n)+1=f(n). L

Remark 6.6. Theorem 6.5 is essentially best possible since (en) is a
bounded sequence only if (xn) is an unconditional basis [13].
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